Class Design
with
OO Programing Languages

MDS-Ana Moreira

From analysis to design

* During the analysis phase we didn’t care
about the implementation language

— This is one of the main concerns in the design
phase
* The obvious candidate languages to support
UML models are OO languages (e.g. C++, Java,
CH)

— However, several modeling abstractions used in
UML are not available in those languages ®

MDS-Ana Moreira

Implementing associations

* OO0 programming languages do not
provide the concept of association

— Instead, they provide references, in which one
object stores a handle to another object

* In the design phase we have to
generate references out of associations
— However this poses a mapping problem

MDS-Ana Moreira

Mapping problem

e Associations ...

—can be bidirectional or unidirectional

* this is specified through arrow heads
(navigation)

—take place among two or more objects

* this is specified through cardinalities and type
of association

* References...
—are unidirectional

—take place between two objects
MDS-Ana Moreira

The direction problem

* Unidirectional associations
—are the most simple type of association
—are much simpler to realize

* Bidirectional associations
— are more complex

— introduce mutual dependencies among classes

— are sometimes necessary
(e.g. in the cases of peer classes that need to work

together closely)

MDS-Ana Moreira

Mapping associations

1. Unidirectional one-to-one association
2. Bidirectional one-to-one association

3. Bidirectional one-to-many association
4. Bidirectional many-to-many association

* Other cases are handled similarly

MDS-Ana Moreira

Unidirectional one-to-one association

Model before transformation:

Advertiser Account

Source code after transfermation:

public class Advertis
private Accoufit account;
public Advertiser() {
account = new Account();
}

public Account getAccount() {
return account;

} Operation to handle the reference

MDS-Ana Moreira

The direction problem!

e The choice between a unidirectional or a
bidirectional association is a trade-off
that we need to evaluate in the context
of the problem and involved classes

* The direction of an association can often
change during the development of the
system

MDS-Ana Moreira

Bidirectional one-to-one association

Object design model before transformation:

1)

(ar

| Advertiser

public class Advertiser {
/* account is initializ
* in the construct and never
* modified. */
private Account account;
public Advertiser() {
account new Account(this);
}
public Account getAccount() {
return account;

}

}
MDS-Ana Moreira

Account |

private Advertiser owner;

publicAccount(owner:Advertiser) {
this.owner = owner;

}

public Advertiser getOwner() {
return owner;

}

Bidirectional one-to-one association

before transformation

zoomIn targetMap

ZoomInAction] 1 MapArea
after transformation @

ZoomInAction MapArea
-targetMap: MapArea Reference | -zoomiIn: ZoomInAction
+getTargetMap(): MapArea A d+de d +getZoominAction(): ZoomInAction
+setTargetMap(map: MapArea) . +setZoomInAction(action: ZoomlInAction)

operations

to handle the references

class ZoomInAction extends AbstractAction {
private MapArea targetMap;
I* Other methods omitted */
void setTargetMap(map: MapArea) {
if (targetMap != map) {
targetMap = map;
targetMap.setZoomInAction(this);}}}

MDS-Ana Moreira

class MapArea extends JPanel {
private ZoominAction zoomin;
I* Other methods omitted */
void setZoomInAction (action:ZoomInAction)
{if (zoomln != action)
{zoomin = action;
zoomin.setTargetMap(this);}}}

Realizing other cardinalities

* One-to-many associations

— cannot be realized using a single reference or a
pair of references.

— Instead, the "many" part is realized by using a
collection of references

* Many-to-many associations

— In this case, both end classes have attributes that
are collections of references and operations to
keep these collections consistent

MDS-Ana Moreira

Bidirectional one-to-many association

Object design model before transformation:

1 accoupt |

owner

Advertiser Account

Source code after transfo

public class Adverti public class Account {

private Set &ccounts; private Advertiser owner;
public Advertiser() { gggé&ﬁe¥§1? setOwner (Advertiser
accounts = new HashSet(Q); if (owner != newOwner) {
} Advertiser old = owner;
public void addAccount(Account a) owner = newOwner;
{ if (newOwner != null)
. newOwner.addAccount
accounts.add(é), (this);
a.setOwner(this); if (oldOwner != null)
old.removeAccount(this);
public void removeAccount(Account a) }
{ }
accounts.remove(a); }
a.setOwner(null);
}

}/\/IDS—Ana Moreira

Bidirectional one-to-many association

before transformation

Layer

layerElements

after transformation

Layer

-layerElements: Set [LayerElement]

+getElements(): Set [LayerElement]
+addElement(le: LayerElement)
+removeElement(le: LayerElement)

MDS-Ana Moreira

LayerElement

*

U

LayerElement

-layer: Layer

+getLayer(): Layer
+setLayer(|: Layer)

before transformation

Polygon

Realizing many-to-many associations

after transformation

Polign

-points: VectoﬁPoint]

polygons points
Point
* *
{ordef
Point
-polygons:%et [Polygon]

+getPoints(): Vector [Point]
+addPoint(p: Point)
+removePoint(p: Point)

MDS-Ana Moreira

+getPolygons(): Set [Polygon]
+addPolygon(pl: Polygon)
+removePolygon(pl: Polygon)

Bidirectional many-to-many association

Object design model before transformation
= {ordered} *

Tournament

Source code after transformation

public tHA.2
players =

new ArrayList(); tournaments = new Arraylist
h
public void addPlayer(Player p) }
{ public void addTournament
(Tournament t) {

if (!tournaments.contains
) {
tournaments.add(t);
t.addPlayer(this);

if (!players.contains(p)) {
players.add(p);
p.addTournament(this);
}
}
’ }

« Decision made here: both ordered'and implemented with a list
MDS-Ana Moreira

Transformation rules (1)

* The naming convention for references is similar
to OCL
— If defined, roles are used for naming references
— Otherwise, we use the target class name starting in

lowercase letter

* Template classes (parameterized types)
available in the target OO language can be used
to implement the required collection types that
represent the “many” cardinality

— e.g. remember the C++ STL (Standard Template
Library)

MDS-Ana Moreira

Transformation rules (2)

* When we have a “many” cardinality we use:
—a Set or other non-sequential parameterized
collection type, if the association is not ordered
* This corresponds to the Set type in OCL
—a Vector, a List or other sequential collection
type available in the target language, if the
association is ordered
* This corresponds to the Sequence type in OCL

MDS-Ana Moreira

Realizing Associative Classes

« Remember that an association class
holds attributes and operations of the
association

* The association class is transformed into
a separate class and a number of binary
associations

MDS-Ana Moreira

Realizing Associative Classes (1st step)

Course

Inscription
before transformation day: Date
-outcome: integer
+getOutcome(): integer

T

1

Student 1

after transformation
Inscription
Student ~day: Date
1 -outcome: integer
+getOutcome(): integer
MDS-Ana Moreira

Course

Realizing Associative Classes (2"9 step)

before transformation

Student

Inscription

after transformation

-day: Date
-outcome: integer

+getOutcome(): integer

g

Inscription

Student

-inscriptions: Set [Inscription]

+getinscriptions(): Set [Inscription
+addInscription(i: Inscription)
+removelnscription(i: Inscription)

-day: Date
-outcome: integer
-student: Student
-course: Course

Course

Course

-inscriptions: Set [Inscription]

MDS-Ana Moreira

+getOutcome(): integer
+getStudent(): Student
+setStudent(s: Student)
+getCourse(): Course

+setCourse(c: Course)

+getinscriptions(): Set [Inscription]
+addInscription(i: Inscription)
+removelnscription(i: Inscription)

10

